
Implementing
Dynamic Binding

What is the value of the following expression?

(let ([y 3])
(let ([f (lambda (x) (+ x y))])

(let ([y 17])
(f 2))))

(let ([y 3])
(let ([f (lambda (x) (+ x y))])

(let ([y 17])
(f 2))))

a) Scheme, Java, C and MiniScheme use static
binding, also called lexical binding. They
connect the reference of y to the nearest
surrounding declaration of y, which in this
case is [y 3], so with lexical binding this
expression evaluates to 5.

(let ([y 3])
(let ([f (lambda (x) (+ x y))])

(let ([y 17])
(f 2))))

b) Dynamic binding connects a reference of y to
the most recent declaration of y, which in this
case is [y 17]. Under dynamic binding this
expression evaluates to 19.

In Scheme, which is lexically scoped -- a lambda
expression evaluates to a closure, which is a triple
containing the environment at the time the lambda
is evaluated (the surrounding environment) and
the parameters and body of the lambda
expression.

When we apply this closure to argument
expressions we evaluate the arguments in the
current environment, make a new environment
that extends the closure's environment with the
new bindings, and evaluate the closure's body
within this new environment.

How would you evaluate lambdas and
applications in a dynamically scoped language?

a) There is no need for closures; they maintain
the lexical environment, which dynamic
binding does not use.

b) The value of a lambda expression is just its
parameters and body.

c) To apply a procedure to a list of arguments,
we extend the current environment with the
bindings of the parameters to their argument
values and evaluate the body in this
environment.

To modify MiniScheme to use dynamic binding instead of lexical
binding, it is easiest to leave the closures in place and just not use
the closure-environment. This means we will have to give apply
proc an argument for the env parameter of eval-exp. Where
apply-proc now says

(define apply-proc (lambda (p args)
(cond

.....
[(closure? p) (let ([params (closure-ids p)]

[bod (closure-body p)]
[cenv (closure-env p)])

(eval-exp bod (new-extended-env params args cenv)))]

To use dynamic binding we would change this to

(define apply-proc (lambda (p args env)
(cond

.....
[(closure? p) (let ([params (closure-ids p)]

[bod (closure-body p)])
[cenv (closure-env p)])

(eval-exp bod (new-extended-env params args env)))]

